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Abstract
When learning to ride a bike, a child falls down
a number of times before achieving the first suc-
cess. As falling down usually has only mild con-
sequences, it can be seen as a tolerable failure in
exchange for a faster learning process, as it pro-
vides rich information about an undesired behav-
ior. In the context of Bayesian optimization under
unknown constraints (BOC), typical strategies for
safe learning explore conservatively and avoid
failures by all means. On the other side of the
spectrum, non conservative BOC algorithms that
allow failing may fail an unbounded number of
times before reaching the optimum. In this work,
we propose a novel decision maker grounded in
control theory that controls the amount of risk we
allow in the search as a function of a given bud-
get of failures. Empirical validation shows that
our algorithm uses the failures budget more effi-
ciently in a variety of optimization experiments,
and generally achieves lower regret, than state-
of-the-art methods. In addition, we propose an
original algorithm for unconstrained Bayesian op-
timization inspired by the notion of excursion sets
in stochastic processes, upon which the failures-
aware algorithm is built.

1. Introduction
Deploying machine learning (ML) algorithms in real-world
scenarios has gained increasing interest during the last
decade. Under some circumstances, lacking from suffi-
ciently accurate models, or knowledge of the environment,
such algorithms can lead to undesired outcomes. Deploying
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machine learning (ML) algorithms in real-world scenarios
is an ongoing challenge. A key difficulty lies in the proper
management of undesired outcomes, which are inevitable
when learning under unknown or uncertain circumstances.
As an extreme case, in applications like autonomous driving,
a failure in the decision-making may lead to human casu-
alties. Such safety-critical scenarios need conservative ML
algorithms, which forbid any failures. On the other hand,
there exist scenarios in which failures are still undesired,
although might not come at a high cost. For example, when
deploying ML algorithms to optimize the parameters of an
industrial drilling machine to drill faster, a few configura-
tions might break the drill bits, but in exchange, a faster
drilling can be learned. In such non-safety-critical appli-
cations, failures shall be considered as a valuable source
of knowledge, and one would tolerate a limited number of
them in exchange for better learning performance.

When iteratively improving machine parameters directly
from data, the mapping between a specific parameter con-
figuration and the corresponding behavior of the machine
is often unknown, and can only be revealed through exper-
iments. Normally, such experiments are time-consuming,
and thus, data collection is considered expensive. In order to
learn the optima of expensive black box functions, Bayesian
optimization (BO) has been established in the last decade as
a promising probabilistic framework (Shahriari et al., 2016).
Therein, the aim is to efficiently exploit the observed data in
combination with prior probabilistic models to estimate the
global optimum from a few trials. In the context of robot
learning, BO has been used to mitigate the effort of manual
controller tuning, see, e.g., (Calandra et al., 2016; von Rohr
et al., 2018; Rai et al., 2018).

When the optimization is subject to unknown external re-
strictions, the goal is to solve a constrained optimization
problem under multiple black box constraints. (Hernández-
Lobato et al., 2016; Gelbart et al., 2014; Gardner et al., 2014;
Gramacy & Lee, 2011; Schonlau et al., 1998; Picheny, 2014)
propose different BO methods to estimate the constrained
global optimum. In (Lam & Willcox, 2017), a variant of
such problem is considered, where the total budget of eval-
uations is explicitly included in the decision-making, by
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formulating the problem as a dynamic programming in-
stance. Because these methods do not have a limit on the
number of incurred failures, they can fail many times. In
other words, none of them inform the decision maker about
the remaining budget of failures at each iteration.

From a different perspective, zero-budget strategies (Sui
et al., 2015; Berkenkamp et al., 2016) are needed in safety-
critical applications, where failures are not allowed. Such
strategies avoid failures by conservatively expanding an
initially given safe area, and never exploring beyond the
learned safety boundaries. However, when applied in a
context where failures are allowed, such strategies become
suboptimal: they will ignore such budget and miss alterna-
tive, potentially more promising, safe areas, located outisde
the initial safe area.

In this work, we pose the problem of learning the con-
strained global optimum in settings where a non-zero bud-
get of failures is given. In particular, we make two main
contributions. Our first contribution is a failures-aware strat-
egy for BOC that, in contrast to prior work, does not need
to be initialized in a safe region and that makes decisions
taking into account the budgets of remaining failures and
evaluations.

Our second contribution is a novel acquisition function in-
spired by key notions of the geometry of excursion sets in
stochastic processes. In (Adler & Taylor, 2009), an excur-
sion set is defined over smooth manifolds as those points for
which a process realization crosses upwards a given thresh-
old. The larger the threshold, the more likely it is that an
upcrossing will reveal the location of the global maximum.
Based on this intuition, we derive an acquisition function,
which can be written analytically, is cheap to evaluate, and
explicitly includes the process derivative to make optimal
decisions.

In the following, we explain and experimentally validate the
aforementioned contributions. In Section 2, we characterize
excursion sets in Gaussian processes (GP), and explain their
benefits when used in BO. In Section 3, we formalize the
proposed novel acquisition function to solve unconstrained
problems. In Section 4, such acquisition is extended for
the constrained case in the presence of a budget of failures.
In Section 5, we validate both acquisition functions empiri-
cally on common benchmarks for global optimization and
real-world applications. We conclude with a discussion in
Section 6.

2. Excursion sets in Bayesian optimization
The proposed search strategy is inspired by the study of
the differential and integral geometry of excursion sets in
stochastic processes (Adler & Taylor, 2009). In the partic-
ular case of GPs, analytical expressions can be derived for

such sets. In the following, we provide the needed mathe-
matical tools and intuition over which our search strategy is
constructed.

2.1. Problem formulation

The main goal is to address the unconstrained optimization
problem

x∗ = argmin
x∈X

f(x), (1)

where the objective f : X → R is a black-box function,
which evaluations are corrupted by noise and are expensive
to collect (due to, e.g., energetic costs), and X ⊂ RD.

2.2. Gaussian process (GP)

We model the objective as a Gaussian process, f ∼
GP (0, k(x, x̂)), with covariance function k : X ×
X → R, and zero prior mean. Observations y(x) =
f(x) + ε are modeled using additive Gaussian noise ε ∼
N (ε; 0, σ2

n ). After having collected t observations from
the objective Dft = {xt,yt} = {x1, . . . , xt, y1, . . . , yt},
its predictive distribution at a location x is given by
p(f |Dft , x) = N (f(x);µ(x|Dft ), σ2(x|Dft )), with predic-
tive mean µ(x|Dft ) = k>t (x)[Kt + σ2

n I]−1yt, where the
entries of vector kt(x) are [kt(x)]i = k(xi, x), the entries
of the Gram matrix Kt are [Kt]i,j = k(xi, xj), and the
entries of the vector of observations yt are [yt]i = yi .
The predictive variance is given by σ2(x|Dft ) = k(x, x)−
k>t (x)[Kt + σ2

n I]−1kt(x). In the remainder of the paper,
we drop the dependency on the current data setDft and write
µ(x), σ(x) to refer to µ(x|Dft ), σ(x|Dft ), respectively.

2.3. Excursion sets in Gaussian processes

Let us assume a zero-mean scalar Gaussian process f , with
X = [0, 1]D, D = 1, and stationary covariance function
k(τ) = k(‖x− x̂‖2). The excursion set {x ∈ X : f(x) ≥
u} is defined as the set of locations where the process f
is above the threshold u. In (Adler & Taylor, 2009, Part
II. Geometry), such sets are characterized by the number
of upcrossings of process samples through the level u, i.e.,
N+
u = #{x ∈ X : f(x) = u, f ′(x) > 0}, where f ′(x) is

the derivative of the process. Intuitively, large N+
u repre-

sents a high frequency of upcrossings, which is connected
with having many areas in X where f(x) lives above u. For
a one-dimensional, stationary, almost surely continuous and
mean-square differentiable Gaussian process, the expected
number of upcrossings (Rasmussen & Williams, 2006, Sec.
4.1) is given by the well-known Rice’s formula (Lindgren,
2006, Sec. 3.1.2)

E
[
N+
u

]
=

∫ 1

0

Ep(f,f ′|x) [f ′ : f = u, f ′ > 0] dx (2)



Constrained Bayesian Optimization under a Limited Budget of Failures

=

∫ 1

0

∫ +∞

−∞

∫ +∞

0

f ′δ(f − u)p(f, f ′|x)df ′dfdx

=
1

2π

√
−k′′(0)

k(0)
exp

(
− u2

2k(0)

)
,

where p(f, f ′|x) is the joint density of the process and its
derivative, both queried at location x, δ is the Dirac delta,
and the second derivative of the covariance function k′′

must exist. Interestingly, (2) can be used to approximate the
probability of finding the supremum of a process realization
above a high level u. The growth rate of the approximation
error with respect to u is bounded∣∣∣∣E [N+

u

]
− Pr( sup

x∈[0,1]

f(x) ≥ u)

∣∣∣∣ < O(e−βu
2/k(0)), (3)

as u→∞, with O(·) indicating the limiting behavior of the
approximation error and β > 1 needs to be found (Adler &
Taylor, 2009, Sec. 14). The intuitive reasoning behind this
is simple: If f crosses a high level u, it is unlikely to do so
more than once. Therefore, the probability that f meets its
supremum above u is close to the probability that there is an
upcrossing of u. Since the number of upcrossings of a high
level will always be small, the probability of an upcrossing
is well approximated by E [N+

u ].

While the bound in (3) does not hold for the general case
D > 1, we use it as a starting point to build a new acquisi-
tion function for D ≥ 1 (cf. Section 2.5), which shows em-
pirically superior results than state-of-the-art BO methods.
In the following section, we show, for D = 1, how E [N+

u ]
can be leveraged to lead the search towards areas where the
number of upcrosssings is large, or equivalently, where the
global maximum is more likely to be found. Thereafter, we
extend the result for D ≥ 1.

2.4. Practical interpretation for use in BO

The expected number of upcrossings (2) contains valuable
information about the amount of times a sample realization
of the process z “upcrosses” the level u. However, (2)
cannot be used directly for decision-making because it is
a global property of the process itself, rather than a local
quantity at a specific location x. Next, we provide a practical
interpretation that relaxes some of the assumptions made
to obtain (2) and allows for its use in BO. To this end, we
introduce three modifications.

First, when seeking for the optimum of the process, it is
more useful to consider both, the up- and down-crossings
through the level u, as both of them occur near the optimum
when u is large. This quantity is defined in (Lindgren, 2006,
Sec. 3.1.2) as the expected number of crossings

E [Nu] =

∫ 1

0

Ep(f,f ′|x) [|f ′| : f = u] dx (4)

=

∫ 1

0

∫ +∞

−∞

∫ +∞

−∞
|f ′|δ(f − u)p(f, f ′|x)df ′dfdx,

with Nu = #{x ∈ [0, 1] : f(x) = u}.

Second, BO uses pointwise information to decide on how
interesting it is to explore a specific location x. (Lindgren,
2006, Theorem 3.1) proposes the intensity of expected cross-
ings E [Nu(x)], which can be computed by simply removing
the domain integral in (4)

E [Nu(x)] =

∫ +∞

−∞

∫ +∞

−∞
|f ′|δ(f − u)p(f, f ′|x)df ′df.

(5)

Third, when conditioning the Gaussian process f on ob-
served data Dft , it becomes non-stationary1, and thus, the
predictive distribution of a query f(x) changes as a function
of x. The dependency on Dft is introduced in (5) following
(Lindgren, 2006, Remark 3.2), as

E
[
Nu(x|Dft )

]
=

∫ +∞

−∞
|f ′|p(u, f ′|x,Dft )df ′, (6)

where the joint density is evaluated at f = u after resolving
the integral over the Dirac delta. We next provide a brief
analysis for solving (6).

Using the rule of conditional probability, we have
p(u, f ′|x,Dft ) = p(u|x,Dft )p(f ′|u, x,Dft ). The first term,
p(u|x,Dft ) = N (u;µ(x), σ2(x)), is a Gaussian density2

evaluated at u, with the predictive mean and variance of the
GP model. The second term is also a Gaussian density over
the process derivative, conditioned on f = u. This can be
seen as adding a virtual observation u at location x to exist-
ing data set. Hence, p(f ′|x, u,Dft ) = p(f ′|Dft ∪{x, u}) =
N (f ′;µ′(x), ν2(x)). Then, (6) can be rewritten as

p(u|x,Dft )

∫ +∞

−∞
|f ′|p(f ′|Dft ∪ {x, u})df ′ = (7)

N (u;µ(x), σ2(x))
(

2ν(x)φ (γ(x)) + µ′(x)erf
(
γ(x)√

2

))
,

where γ(x) = µ′(x)/ν(x), φ is the probability density
function of a standard normal distribution, and erf (·) is the
error function (see Appendix A for a complete derivation).
Fig. 1 shows E[Nu(x|Dft )] for two different values of u,
where the GP is conditioned on seven observations. As can
be seen, different thresholds imply different intensity of
crossings for the same process. When the threshold is near

1Note that all GPs are non-stationary when conditioned on data,
even if the covariance function that defines them is stationary.

2Using simplified notation, we write p(u|x,Df
t ) to refer to

the density function p
f |x,Df

t
(ξ) evaluated at ξ = u. Similarly,

we write p(u, f ′|x,Df
t ) to refer to the joint density function

p
f,f ′|x,Df

t
(ξ, ζ) evaluated at ξ = u for some value ζ.
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(a) Gaussian process posterior

(b) Intensity of expected crossings E[Nu(x|Df
t )]

Figure 1: (a) Gaussian process posterior conditioned on a
set of observations. Given a process realization (dashed
lines), two choices for the threshold u (solid lines) deter-
mine two different excursion sets. (b) Intensity of expected
crossings E[Nu(x|Dft )] for each threshold u. Higher values
correspond to areas where the boundaries of the excursion
sets are likely to be, i.e., where the process is more likely
to cross u. The curves are normalized to have the same
maximum value.

collected evaluations, the largest intensity of crossings tends
to be concentrated near the data. On the contrary, when it is
far from the data, the largest intensity of crossings is found
in areas of large variance.

2.5. Extension to D dimensions

Although (7) was derived for D = 1, we can extend it to the
case D ≥ 1. Since (6) depends on |f ′|, a natural extension
is to consider the L-1 norm of the gradient of the process
‖∇f(x)‖1 =

∑D
j=1 |

∂f(x)
∂xj
|. Following this, we extend (7)

as Ep(f(x),∇f(x))[‖∇f(x)‖1 : f(x) = u,Dft ],

E
[
Nu(x|Dft )

]
' N (u;µ(x), σ2(x))× (8)

D∑
j=1

(
2νj(x)φ(γj(x)) + µj(x)erf

(
γj(x)√

2

))
,

where γj(x) = µj(x)/νj(x). The gradient ∇f(x) ∼
N (∇f(x);∇µ(x), V (x)) follows a multivariate Gaussian,
and µj(x) = [∇µ(x)]j and νj(x) = ([V (x)]jj)

1/2 =√
∂2k(xj , xj)/∂x2

j . Note that ∇µ(x) and V (x) depend

on the extended data set Dft ∪ {x, u}.

In the following sections, we propose two novel algorithms
that build upon the quantity (8).

3. Excursion search algorithm
The modifications applied to (2), detailed above, allow ex-
tracting useful information about how likely is the process
f to cross a certain level u at each location x. When u is
a lower bound on the collected data, (8) reveals locations
where the process is more likely to have a minimum. If
we repeatedly evaluate at such locations, one would expect
to approach faster the global minimum. In the following,
we characterize (8) as an acquisition function for optimal
decision-making.

3.1. Threshold of crossings as the global minimum

The choice of the threshold u in (8) is important when trying
to find the global minimum. A hypothetically appropriate
low value for u is right above the global minimum f∗ =
f(x∗), i.e., u = f∗ + ε, where ε > 0 is small. Then,
if crossings through u = f∗ + ε are likely to occur at a
specific area, we know that such area is likely to contain the
global minimum, and thus, will show a large E[Nu(x|Dft )].
However, in practice we do not have access to the true f∗
of the objetive function, and thus, cannot compute u in the
aforementioned way. At most, we are able to assume a
distribution over the global minimum f∗ ∼ p(f∗), implied
by the GP model on f . In the following, we assume that u
follows such distribution, i.e., u ∼ p(u) = p(f∗).

It is well-known in extreme value theory (De Haan & Fer-
reira, 2007) that f∗ follows one of the three extreme value
distributions: Gumbel, Fréchet, or Weibull, which generally
model tails distributions. For example, in (Wang & Jegelka,
2017), the Gumbel distribution is chosen to model p(f∗).
However, such distribution has infinite support, while in
practice it is not useful to have any probability mass above
the best observed evaluation η = min(y(x1), . . . , y(xT )).
Instead, we consider the Fréchet distribution as a more ap-
propriate choice as it provides finite support f∗ ≤ η. For
minimization problems, we can define it in terms of its
survival function Fs,q(a) = Pr(f∗ ≥ a), given by

Fs,q(a) =

{
0, if a > η

exp
(
−
(
η−a
s

)−q)
, if a ≤ η (9)

where Pr(f∗ ≥ a) =
∫ +∞
a

p(f∗)df∗, and the parame-
ters s > 0 and q > 1 can be estimated from data fol-
lowing the same approach as in (Wang & Jegelka, 2017,
Appendix B). A thorough analysis on the advantage of us-
ing the Fréchet distribution, instead of the Gumbel distri-
bution, for gathering samples of f∗ can be found in Ap-
pendix B. Using the above definition, the stochastic thresh-
old u ∼ p(u) = p(f∗), makes the quantity (8) also stochas-
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tic. We propose to compute its expectation over u, i.e.,
Ep(u)[E[Nu(x|Dft )]] = Ep(f∗)[E[Nf∗(x|D

f
t )]], which we

explain next.

3.2. Acquisition function

We define the excursion search (XS) acquisition function as

αX(x) = Ep(f∗)
[
E
[
Nf∗(x|D

f
t )
]]

(10)

' 1

S

S∑
l=1

E
[
Nf l
∗
(x|Dft )

]
,

where the outer expectation is intractable and is approx-
imated via sampling. For each sample f l∗ ∼ p(f∗), (8)
needs to be recomputed. The samples can be collected
through the inverse of (9), f l∗ = F−1

s,q (ξl). ξl ∼ U(0, 1)
follows a uniform distribution in the unit interval, and
F−1
s,q (ξl) = η − s(− log(1− ξl))−1/q .

Intuitively, the XS acquisition function (10) reveals areas
near the global maximum (i.e., where the gradient crosses
the estimated f∗ with large norm), instead of directly aiming
at potential maximums, minimums, or saddle points. Fur-
thermore, XS inherently trades off exploration with exploita-
tion: At early stages of the search, the estimated Fréchet
distribution (9) reflects large uncertainty about f∗, which
causes the samples f l∗ to lie far from the data. Hence, explo-
ration is encouraged, as shown in Fig. 1 (green lines). At
later stages, when more data is available, the Fréchet dis-
tribution (9) shrinks toward the lowest observations, which
then encourages exploitation, as shown in Fig. 1 (violet
lines).

The acquisition (10) is our first contribution, and can be
used for unconstrained optimization problems, e.g., (1).

4. Bayesian optimization with a limited
budget of failures

In the previous section, we introduced a new acquisition
function (10) grounded in the connection between the true
optimum of the process f and the expected number of cross-
ings through its current estimate (cf. (3)). However, such
acquisition does not explicitly have into account any budget
of failures B or evaluations T . In the following, we propose
an algorithm that makes use of B and T to balance the deci-
sion making between (i) safely exploring encountered safe
areas, and (ii) searching outside the safe areas at the risk of
failing, when safe areas contain no further information.

4.1. Problem formulation

To the unconstrained problem (1), we add G black-box con-
straints, gj : X → R, j = {1, . . . , G}, also corrupted by
noise and expensive to evaluate. Moreover, we assume a

non-safety critical scenario, where violating the constraints
is allowed, but it is strictly forbidden to do so more than B
times. Analogously, we allow only for a maximum number
of T ≥ B evaluations. The case T < B is not consid-
ered herein, as the budget of failures can simply be ignored.
Under these conditions, we formulate the constrained opti-
mization problem with limited budget of failures as

xc
∗ = argmin

x∈X
f(x), s.t. g1(x) ≤ 0, . . . , gG(x) ≤ 0

under failures
T∑
t=1

Γ(xt) ≤ B, (11)

where xc
∗ is the location of the constrained minimum,

and Γ(xt) = I [g1(xt) > 0 ∨ . . . ∨ gG(xt) > 0] equals 1
if at least one of the constraints is violated at location
xt, and 0 otherwise. I is the indicator function, and
g(x1), . . . , g(xT ) are the collected evaluations of the con-
straints at locations x1, . . . , xT . Since the constraints gj are
unknown, and modeled as independent Gaussian processes
gj ∼ GP (0, k(x, x̂)), queries f(x) and g(x) are stochas-
tic and (11) cannot be solved directly. Instead, we address
the analogous probabilistic formulation from (Gelbart et al.,
2014):

xc
∗ ' argmin

x∈X
µ(x), s.t.

G∏
j=1

Pr(gj(x) ≤ 0) ≥ ρ

under failures
T∑
t=1

Γ(xt) ≤ B, (12)

where Pr(gj(x) ≤ 0) = Φ (−µj(x)/σj(x)), Φ is the cu-
mulative density function of a standard normal distribution,
and ρ ∈ (0, 1) is typically set close to one. The predictive
mean µj and variance σ2

j conditioned on Dgjt of each gj are
computed as in Section 2.2. In the following, we provide a
novel Bayesian optimization strategy to address (12).

4.2. Safe exploration with dynamic control

In order to include the probability of constraint satisfaction
in the decision making, we propose a similar approach to
(Gelbart et al., 2014) by explicitly adding a probabilistic
constraint to the search of the next evaluation

xnext = argmax
x∈X

αX(x)

s.t.
K∏
i=1

Pr(gj(x) ≤ 0) ≥ ρt,
(13)

where the parameter ρt ∈ (0, 1) determines how much we
are willing to tolerate constraint violation at each iteration t.
This leads the search away from areas where the constraint
is likely to be violated, as those areas get revealed during
the search.
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Contrary to (Gelbart et al., 2014), where ρt is fixed a priori,
we propose to choose it at each iteration, depending on the
remaining budget of failures ∆Bt = B −

∑t
j=1 Γ(xt) and

remaining iterations ∆Tt = T − t. Intuitively, the more
failures we have left (large ∆Bt), the more we are willing
to tolerate constraint violation (large ρt). We achieve this
by proposing an automatic control law to drive ρt, which
we describe next.

Let us define a latent variable zt = Φ−1 (ρt), zt ∈ R that
follows a deterministic process zt+1 = zt + ut, using a
dynamic feedback controller ut = ut(∆Bt,∆Tt). Such
controller drives the process toward one of the two refer-
ences: zsafe = Φ−1 (ρsafe) and zrisk = Φ−1 (ρrisk), where
typical values are ρsafe = 0.99 and ρrisk = 0.01. We define
a control law

ut = (zsafe − zt)Γ(xt)
∆Bt

+ (zrisk − zt) ∆Bt

2∆Tt
, (14)

with ∆Bt > 0, ∆Tt > 0, and ∆Bt ≤ ∆Tt. The first
term drives the process toward zsafe when a failure occurs
at iteration t, with intensity 1/∆Bt. In this way, the fewer
failures are left in the budget, the more urgently the process
chases zsafe. The second term attempts to push zt down to
zrisk with an intensity proportional to the ratio between the
remaining failures and iterations.

When ∆Bt = 0, but ∆Tt > 0, only a conservative safe
exploration is allowed. To do so, we set ut = (zsafe − zt)
for the remaining iterations until t = T . Additionally, if
there are more failures left than remaining iterations, i.e.,
∆Bt > ∆Tt, the remaining budget of failures is not decisive
for decision making, and thus, we set ut = (zrisk − zt).

The resulting control strategy weights risky versus conser-
vative decision-making by considering the budget of evalua-
tions and iterations left: When no failures occur for a few
consecutive iterations, ρt is slowly driven toward ρrisk, and
when a failure takes place, it lifts up ρt toward ρsafe.

4.3. Risky search of new safe areas

The probabilistic constraint in (13) puts a hard constraint on
the decision making by not allowing evaluations in regions
that are known to be unsafe. When ρt is high, (13) will
discard regions where no data has been collected and locally
explore regions where safe evaluations are present. Such
conservative decision making is desirable when ∆Bt �
∆Tt because it avoids unsafe evaluations. The smaller the
ρt, the more risky evaluations we can afford, which makes
the constraint information less important in the decision
making. However, when ρt is too low, the probabilistic
constraint tends to be ignored, and the decisions are based
on the information from the objective. Albeit this indeed
counts as the wanted risky exploration strategy, completely
ignoring the constraint information could result in repeated
evaluations in unsafe areas. To avoid this, we follow the

apporach from (Gelbart et al., 2014), where the aquisition
function is aware of the constraint information, without this
being a hard constraint. Therein, locations are chosen at

xnext = argmax
x∈X

αX(x)

D∏
j=1

Pr(gj(x) ≤ 0). (15)

This approach “jumps” outside the current safe areas at
the risk of failing, while the multiplying term discourages
exploration in areas revealed to be unsafe.

Trading off risky versus safe exploration depends on the
remaining budget ∆Bt, and is quantified by ρt, as detailed
in Section 4.2. We propose a user-defined decision boundary
ρb, such that if ρt ≤ ρb, the next location will be selected
using (15), and (13) otherwise.

While (13) assumes that a safe area has already been found,
this might not be the case at an early stage of the search.
In such case, we collect observations using (15) and only
resort to the risk versus safety trade-off once a safe area has
been found.

Pseudocode for the overall framework, named failures-
aware excursion search (XSF), and an analysis of its com-
putational complexity can be found in Appendix C. XSF re-
turns the estimated location of the constrained minimum xc

∗
from (12), computed by setting ρ = ρsafe.

5. Empirical analysis and validation
We empricially validate XS and XSF by comparing their
performance against state-of-the-art methods. We consider
three different scenarios. In the first one, we validate each
method on common challenging benchmarks for global op-
timization. In the second and third scenarios we compare
XSF against state-of-the-art methods in constrained opti-
mization problems. In the second, we optimize the hyper-
parameters of a neural network to achieve maximum com-
pression without degrading its performance. In the third,
we learn the state feedback controller of a cart-pole system.
Both, XS and XSF are implemented in Python. The code,
which includes scripts to reproduce the results presented
herein, is documented and publicly available at https:
//github.com/alonrot/excursionsearch.

5.1. Experimental setup

To assess the performance of all methods we use sim-
ple regret rT = f(xbo) − minx∈X f(x), where xbo =
arg mint∈[1,T ] y(xt) is the point that yielded the best obser-
vation so far. In the constrained case, such point is given by
xbo = mint∈[1,T ] y(xt) s.t. yg(xt) ≤ 0. We quantify how
often safe evaluations are collected using Ω = 100Nsafe/T ,
where Nsafe is the number of safe evaluations made at the
end of each run.

https://github.com/alonrot/excursionsearch
https://github.com/alonrot/excursionsearch
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In all cases, the domain is scaled to the unit hypercube.
We set ρsafe = 0.99, ρrisk = 0.01, and ρ0 = 0.1. The
decision boundary was set at ρb = 0.5. Both, the objective
function and the constraint are modeled with a zero-mean
GP, with a squared exponential kernel. The lengthscales
and the signal variance are fit to the data after each iteration.
Further implementation details, such as hyperprior choices
and number of random restarts, are reported in Appendix D.

5.2. Benchmarks for global optimization

We validate XS and XSF in two challenging benchmarks for
global optimization: Hartman 6D, and Michalewicz 10D
(Jamil & Yang, 2013). We allow a budget of evaluations
T = 100 in all cases and repeat all experiments 50 times for
each function using a different seed. As in (Wang & Jegelka,
2017; Hernández-Lobato et al., 2016), we use the same
initial evaluation (previously selected at random) across all
repetitions.

5.2.1. EXCURSION SEARCH (XS)

We assess the performance of XS by comparing against pop-
ular BO methods: Expected improvement (EI) (Močkus,
1975), Probability of improvement (PI) (Kushner, 1964),
Min-Value Entropy Search (MES) (Wang & Jegelka, 2017),
and Gaussian process upper confidence bound (UCB) (Srini-
vas et al., 2010). Our implementations are based on those
used by (Wang & Jegelka, 2017), available online3

Fig. 2a shows the evolution of the simple regret over itera-
tions in the Michalewicz 10D benchmark. XS reaches the
lowest regret, and none of the methods is able to achieve
a regret close to zero, which is not surprising given high
dimensionality of the problem and the number of allowed
evaluations. Table 1 (top) shows statistics on the regret value
for both benchmarks. While all methods report a generally
high regret in Michalewicz 10D, XS clearly outperforms all
the other methdos in Hartman 6D, as it finds a near-zero
regret.

5.2.2. FAILURES-AWARE EXCURSION SEARCH (XSF)

To validate XSF, we propose a constrained optimization
problem under a limited budget of failures. For this, we
simply impose a constraint to the aforementioned bench-
marks g(x) =

∏D
i=1 sin(xi) − 2−D. Such function uni-

formly divides the volume in 2D sub-hypercubes, and places
2D−1 convex disjoint unsafe areas in each one of the sub-
hypercubes, so that they are never adjacent to each other.
We allow T = 100 and a considerably small budget of
failures B = 10 to all methods. We compare XSF against
expected improvement with constraints (EIC) (Gelbart et al.,
2014) and predictive entropy search with constraints (PESC)

3https://github.com/zi-w/Max-value-Entropy-Search

(a) Unconstrained (b) Constrained

Figure 2: Performance assesment of XS and XSF on the
Michalewicz 10-dimensional benchmark.

(Hernández-Lobato et al., 2016). EIC and PESC are termi-
nated when their budget is depleted. Although individual ex-
periments rarely finish at the same iteration (i.e., some may
deplete the budget of failures earlier than others), we use in
our results the last regret reported by each algorithm. For
EIC, we use our own implementation, while for PESC we
use the available open source implementation, included in
Spearmint4.

In Fig. 2b, we see that XSF reaches a higher number of
total evaluations and consistently achieves lower regret than
EIC and PESC. Fig. 2b (middle) shows the evolution of the
remaining budget of failures ∆Bt over iterations (mean and
standard deviation). As can be seen, EIC and PESC deplete

4https://github.com/HIPS/Spearmint/tree/PESC

Table 1: Constrained (top) and unconstrained benchmarks
(bottom). Simple regret rT (mean ± std) and percentage of
safe evaluations Ω.

HARTMAN 6D MICHALEWICZ 10D
rT rT

EI 0.75± 0.00 0.67± 0.00
MES 0.47± 0.00 0.67± 0.00

PI 0.34± 0.11 0.72± 0.03
UCB 0.39± 0.18 0.70± 0.06
XS 0.02± 0.01 0.63± 0.06

rT Ω (%) rT Ω (%)
EIC 0.33± 0.35 68± 30 0.75± 0.06 15± 3

PESC 0.14± 0.22 61± 29 0.74± 0.07 16± 5
XSF 0.09± 0.14 90± 16 0.70± 0.04 28± 7
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the budget faster than XSF. Finally, Fig. 2b (bottom) shows
the evolution of the ρt parameter used to switch betwen
risky and safe strategies in XSF, and also as a threshold
for probabilistic constraint satisfaction (cf. Section 4.2).
We differentiate two stages: During the initial iterations
ρt is low, and thus, risky exploration is preferred, which
allows XSF to quickly discover better safe areas. At the last
iterations, when the budget is depleted, XSF keeps exploring
conservatively the discovered safe areas, with ρt = ρsafe.

Table 1 (bottom) shows the regret for both, the Michalewicz
10D and the Hartman 6D functions in the constrained case.
While the regret comparison is similar to the 10D case,
the 6D case shows that XS clearly outperforms the other
methods. The quantity Ω confirms that XSF visits safe
evaluations more often than the other methods.

Generally, hyperparameter learning influences the perfor-
mance of the algorithms. In Appendix E, we show experi-
ments with fixed hyperparameters and a correct GP model,
where XS and XSF outperform the aforementioned methods.

5.3. Compressing a deep neural network

Applying modern deep neural networks (NNs) to large
amounts of data typically results in large memory require-
ments to store the learned weights. Therefore, finding ways
of reducing model size without degrading the NN perfor-
mance has become an important goal in deep learning, for
example, to meet storage requirements or to reduce energy
consumption. Bayesian compression has been recently pro-
posed as a mean to reduce the NN size: Given an NN
architecture, an approximate posterior distribution q on the
NN weights is obtained by maximizing the evidence lower
bound (ELBO), which balances the expected log-likelihood
of samples from q and the theoretical compression size, as
given by the KL divergence between q and a prior distri-
bution p (Havasi et al., 2018). A penalization factor β can
be used to scale the KL divergence to control the final size
of the NN. Finding the value of β that achieves the lowest
compression size without significantly degrading NN per-
formance is a challenging and expensive tuning problem.
To alleviate the effort of tuning hyperparameters, Bayesian
optimization is commonly used. Herein, we propose to
minimize the validation error of the NN while keeping its
size below a threshold, using constrained Bayesian opti-
mization under a limited budget of failures. While in this
example failing to comply with the size requirements is not
catastrophic, collecting many failures is undesirable.

We use a LeNet-5 on the MNIST dataset, and a required size
below 15 kB. The parameters to tune are β, the learning rate
χ, and a scaling factor κ on the the number of neurons of
all layers. As a reference for our implementation, we used

(a) NN compression (b) Cart-pole problem

Figure 3: Performance comparison of XSF against EIC and
PESC

the open source implementation of MIRACLE5 (Havasi
et al., 2018). We allow T = 20 and B = 5 and repeat
the experiments 5 times. We fix the training epochs to
20000 for each evaluation (about 25 min in wall-clock time).
As shown in Fig. 3a, XSF achieves the lowest regret and
standard deviation. The best safe observation is reported by
XSF, with validation error 0.76% and theoretical NN size of
12.4 kB (x553 compression). The learned parameters are
β = 6.56× 10−7, χ = 1.35× 10−3 and κ = 10.

5.4. Tuning a feedback controller

Bayesian optimization has been used for learning robot con-
trollers to alleviate manual tuning (Calandra et al., 2016;
Rai et al., 2018). Herein, we propose to tune a 4D state
feedback controller on a cart-pole system, where unstable
controllers found during the search are undesirable, as hu-
man intervention is required to reset the platform, but not
catastrophic. In this setting, allowing a limited budget of
failures might increase chances of finding a better optimum.
In practice, a constraint can be placed in the cart position to
trigger an emergency stop when it grows large (Marco et al.,
2016). Controllers that surpass such limit at any moment
during the experiment are considered a failure. We use the
simulated cart-pole system6 from openAI gym (Brockman
et al., 2016), implemeted in the MuJoCo physics engine
(Todorov et al., 2012). The tasks consists on, first stabiliz-
ing the pendulum starting from random initial conditions,
and second, disturbing the cart position with a small step.
We consider a budget B = 15 and T = 100, and repeat all

5https://github.com/cambridge-mlg/miracle
6https://gym.openai.com/envs/InvertedPendulum-v2/
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experiments 10 times. Fig. 3b shows that XSF finds a better
controller than the other methods.

6. Conclusions
In this paper, we have presented two novel algorithms for
BO: Excursion search (XS), which is based on the study
of excursion sets in Gaussian processes, and failures-aware
excursion search (XSF), which trades off risky and safe
exploration as a function of the remaining budget of fail-
ures through a dynamic feedback controller. Our empirical
validation shows that both algorithms outperform state-of-
the-art methods. Specifically, in situations in which failing
is permited, but undesirable, XSF makes better use of a
given budget of failures.
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A. Additional details to Sec. 2.4
Herein, the derivation of (7) is complemented with two
additional insights. First, in Appendix A.1, we show how
the integral from (7) resolves into an analytical expression.
Then, in Appendix A.2, we reason about adding {x, u} to
the dataset Dft as a virtual observation.

A.1. Analytical expression for the integral in (7)

The integral from (7) can be split in two parts∫ +∞

−∞
|f ′|p(f ′|D̃)df ′ = −

∫ 0

−∞
f ′p(f ′|D̃)df ′

+

∫ +∞

0

f ′p(f ′|D̃)df ′,

where the placeholder D̃ = Dft ∪ {x, u} is used for sim-
plicity, and the dependency of f ′ on x is implicit, and also
omitted. Since f ′ ∼ N (f ′;µ′(x), ν2(x)) is Gaussian dis-
tributed, each of the integrals above can be seen as the
expected value of an unnormalized truncated normal dis-
tribution with support [−∞, 0], and [0,+∞], respectively.
These expectations are given by (Jawitz, 2004)∫ 0

−∞
f ′p(f ′|D̃)df ′ = µ′(x)Zu(x)− ν(x)φ

(
−µ

′(x)
ν(x)

)
∫ +∞

0

f ′p(f ′|D̃)df ′ = µ′(x)Zl(x) + ν(x)φ
(
−µ

′(x)
ν(x)

)
,

where Zl(x) = Φ
(
µ′(x)
ν(x)

)
, Zu(x) = Φ

(
−µ′(x)
ν(x)

)
, φ is the

density of a standard normal distribution and Φ is its cu-
mulative density function. We make use of the definition
Φ (a) = 1

2 (1 + erf
(
a/
√

2
)
), where erf (·) is the error func-

tion, to compute Φ (a) − Φ (−a) = erf
(
a/
√

2
)
. Then,

Zl(x) − Zu(x) = erf
(

µ′(x)√
2ν(x)

)
, and the integral can be

solved analytically as∫ +∞

−∞
|f ′|p(f ′|D̃)df ′

= µ′(x)(Zl(x)− Zu(x)) + 2ν(x)φ
(
µ′(x)
ν(x)

)
= µ′(x)erf

(
µ′(x)√
2ν(x)

)
+ 2ν(x)φ

(
µ′(x)
ν(x)

)
.

Then, (7) follows.

A.2. Virtual observation {x, u}

The posterior of the process derivative p(f ′|x, u,Dft ) is a
Gaussian density and can be seen as conditioning f ′(x)
on an extended dataset that includes {x, u} as a virtual
observation. In the following, we briefly discuss this.

Since differentiation is a linear operation, the derivative of a
GP remains a GP (Rasmussen & Williams, 2006, Sec. 9.4).

Furthermore, the joint density between a process value f(x),
its derivative f ′(x) and the dataset {X, y} is Gaussian (Wu
et al., 2017)

p(y, f, f ′|x,X) =

N

 yf
f ′

 ;

0
0
0

 ,
K̃(X,X) K(X,x) K ′(X,x)
K(x,X) K(x, x) K ′(x, x)
K ′(x,X) K ′(x, x) K ′′(x, x)

 ,

where K̃(X,X) = K(X,X) + σ2
n I , K ′(X,x) =

∂K(X,x)/∂x, K ′′(x, x) = ∂2K(x, x)/∂x2, and the prior
mean of the GP is assumed to be zero. Then, the conditional
p(f ′|f, x,Dft ) = N (f ′;µ′(x; f), ν2(x)) is also Gaussian,
and can be obtained using Gaussian algebra (Rasmussen &
Williams, 2006, A. 2). The mean µ′(x; f) depends on the
random variable f as

µ′(x; f) =[
K ′(x,X) K ′(x, x)

] [K̃(X,X) K(X,x)
K(x,X) K(x, x)

]−1 [
y
f

]
.

(16)

The seeked Gaussian density N (f ′;µ′(x;u), ν2(x)) is ob-
tained by replacing the value f in the expression for the
mean (16). Thereby, {x, u} appears in (16) as an addi-
tional virtual observation at location x added to the existing
dataset {X, y}, in shorthand notation: p(f ′|u, x,Dft ) =

p(f ′|Dft ∪ {x, u}).

B. Fréchet distribution
In this section, we present a brief analysis on why assuming
a Fréchet distribution is more error prone in practice than
using the Gumbel distribution, when it comes to model the
distribution over the global minimum p(f∗). This analysis
complements Sec. 3.1 in the paper.

When modeling p(f∗) with the Gumbel distribution and
sampling from it, some samples of the global minimum can
lie above η, with non-zero probability, which is unrealistic.
This can be explicitly avoided by using the Fréchet distribu-
tion which, contrary to Gumbel, has zero probability mass
near η. We illustrate this with an example, in which a GP
with zero mean, unit variance, and squared exponential ker-
nel is considered, conditioned on 20 observations sampled
from the GP prior. We discretize the domain in 200 points
and sample the resulting GP posterior at them. In Fig. 4, we
see that a portion of the Gumbel samples lie above η. To
show consistency, we sample the posterior GP 100 times
and average the number of times that Gumbel exceeds η, i.e.,
1.60 ± 1.22% of the cases, while the Fréchet distribution
exceeds η in 0% of the cases.
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Figure 4: (top) Gaussian process, and η (red dashed
line). (bottom) Survival functions for both Gumbel, and
Fréchet distributions. Samples from the Gumbel (crosses)
and from the Fréchet (circles) distribution are shown.

C. Algorithm and complexity
Herein, we discuss pseudocode for XSF and its computa-
tional complexity.

C.1. XSF algorithm

Pseudocode for XSF is shown in Algorithm 1. The deci-
sion boundary ρb is used to switch between safe search (cf.
(13)) and risky search (cf. (15)). The algorithm returns the
location where the mean of the posterior GP is minimized
without violating the probabilistic constraints. To abbreviate,
we have used the placeholder ϕ(x) =

∏K
i=1 Pr(gj(x) ≤ 0).

We do not explicitly discuss XS, as it simply comprises
a standard Bayesian optimization loop, which involves (i)
computing samples of the global minimum, and (ii) maxi-
mizing the acquisition function (10).

C.2. Complexity

At each iteration, the most expensive operations required
to obtain (13) and (15) are: (a) obtaining samples from the
global minimum p(f∗) and (b) maximizing the acquisition
function using local optimization with random restarts.

As explained in (Wang & Jegelka, 2017), obtaining S sam-
ples from p(f∗) involves discretizing the input domain
and performing a binary search, which has a total cost of
O(S+Nd log(1/κ)), where Nd is the size of the discretiza-
tion grid, and κ is the accuracy of the binary search.

Each call to the acquisition function αX (10), has a cost of
O(SD) where D is the dimensionality of the input space.
Then, assuming R random restarts, and M maximum num-
ber of function calls, the total cost of XSF in per iteration

Algorithm 1 Failures-aware Excursion Search (XSF)

Input: T,B,Df0 ,D
g
0 , ρsafe, ρrisk, ρb, ρ0

for t = 1 to T do
ρt ← UPDATEDECISIONBOUNDARY(ρt−1)
f∗ ← SAMPLEGLOBALMINIMUM(S)
if ρt > ρb then
xt ← arg maxx∈X αX(x; f∗) s.t. ϕ(x) ≥ ρt (13)

else
xt ← arg maxx∈X αX(x; f∗)ϕ(x) (15)

end if
EVALUATEANDUPDATEGPS(xt)

end for
xc
∗ ← arg minx∈X µ(x) s.t. ϕ(x) ≥ ρsafe

Return: xc
∗

function UPDATEDECISIONBOUNDARY(ρt)
zt ← Φ−1 (ρt)
ut ← ut(∆Bt,∆Tt) Controller update (14)
zt ← zt + ut Process update
Return: Φ (zt)

end function

function SAMPLEGLOBALMINIMUM(S)
Estimate Fréchet distribution Fs,q following (Wang &
Jegelka, 2017, Appendix B)
for l = 1 to S do
f l∗ = F−1

s,q (ξl). ξl ∼ U(0, 1)
end for
Return: f1

∗ , . . . , f
S
∗

end function

function EVALUATEANDUPDATEGPS(xt)
y = f(xt), yj = gj(xt) j = {1, . . . , G}
Dft ← {y, xt}, D

gj
t ← {yj , xt} j = {1, . . . , G}

Update hyperparameters of GP models
end function

the worst case scenario is given by O(MRD(S + 1) +
Nd log(1/κ) + (G + 1)(Nobs + 1)3). The last term is the
cost of inverting the Gram matrix, needed for GP predic-
tions (cf. (16)), after having collected Nobs observations,
and having G constraints. When setting G = 0, we obtain
the computational cost of XS, as it also requires gathering
samples from p(f∗) and local optimization with random
restarts.

D. Implementation details
Both, XS and XSF are developed using BOTORCH7, a
Python library for Bayesian optimization that serves as a
low-level API for building and optimizing new acquisition
functions and fitting GP models. It makes use of SCIPY

7https://botorch.org/docs/introduction.html
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Python optimizers8 for estimating the GP hyperparameters
and optimizing the acquisition function through local op-
timization with random restarts. In all cases we allow 10
random restarts and use L-BFGS-B (Byrd et al., 1995) as
local optimization algorithm. Currently, BOTORCH does not
support optimization under non-linear constraints, which is
needed to solve (13). To overcome this, we use the imple-
mentation of COBYLA (Powell, 1994) from NLOPT9.

In all experiments, the noise of the likelihood is fixed to
σn = 0.01 for all GPs. The chosen hyperpriors on the
lengthscales and the signal variance are reported in Table 2,
where U(a, b) refers to a uniform prior on the interval [a, b],
G(a, b) refers to a Gamma prior with concentration a and
rate b, and N (a, b2) refers to a normal distribution with
mean a and standard deviation b.

In Sec. 5.2., both, the Michalewicz and the Hartman func-
tions are normalized to have zero mean and unit variance.
The true minimum is known for both functions, which al-
lows to compute the regret.

In Sec. 5.4, the goal is to find the state feedback gain
x ∈ R4×1 for the cart-pole problem that minimizes a
quadratic cost f(x), which penalizes deviations of the
pendulum states sk = [ϕk, ϕ̇k, lk, l̇k]> from an equilibrium
point s∗. The pole angle is ϕk, the pole angular velocity is
ϕ̇k, the cart displacement is lk, and the cart velocity is l̇k.
The input to the system is the cart acceleration ak, which
is given by ak = x>(sk − s∗) + 0.01

∑Nsimu
1 (lk − l∗),

where an integrator, with gain 0.01, is added to eliminate
the steady-state the error. For each parametrization x, the
constraint value is computed as the maximum displacement
of the cart over a simulation of Nsimu = 800 steps, i.e.,
g(x) = max(lk), k = {1, . . . , Nsimu}. Constraint violation
is quantified as g(x) > lmax, where lmax is the physical limit
of the rail in which the cart moves. To allow the system
to dissipate energy, the damping value of the simulated
cart-pole in MuJoCo was increased from 1.0 to 1.5.

E. Additional results
In this section, we present complementary results to Sec. 5.

To decouple the influence of the hyperparamater learning
from the performance of the acquisition function itself, we
fix the GP hyperparameters and sample the true objective f
and the true constraint g from the corresponding GP priors.
To obtain such samples we follow the same approach as in
(Hernández-Lobato et al., 2016): First, the input domain
is discretized to an irregular grid of 8000 points. Second,

8https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
9https://nlopt.readthedocs.io/en/latest/

Table 2: Hyperprior choices for the GP model hyperparame-
ters for all experiments.

LENGTHSCALE λ VARIANCE σ2

Michalewicz 10D f U(0.01, 0.3) N (0.5, 0.252)
g U(0.01, 0.3) N (0.5, 0.252)

Hartman 6D f G(1.0, 5.0) N (0.5, 0.252)
g G(1.0, 5.0) N (0.5, 0.252)

NN compression f U(0.01, 0.3) N (0.5, 0.22)
g U(0.01, 0.3) N (7.5, 2.02)

Pendulum f U(0.01, 0.3) N (1.0, 0.252)
g U(0.01, 0.3) N (0.5, 0.252)

Table 3: Constrained (top) and unconstrained in-model com-
parisons (bottom). Simple regret rT (mean ± std) and per-
centage of safe evaluations Ω.

3D SYNTHETIC FUNCTION

rT
EI 1.03± 0.50

MES 1.03± 0.43
PI 0.86± 0.41

UCB 1.00± 0.43
XS 0.19± 0.34

rT Ω (%)
EIC 0.71± 0.61 21± 19

PESC 1.32± 0.62 14± 6
XSF 0.30± 0.51 52± 15

function evaluations are randomly sampled from the cor-
responding GP prior at such locations. Finally, the GP is
conditioned on those evaluations and the resulting posterior
mean is used as true objective. The lengthscales where fixed
to 0.1 and the signal variance to 1.0.

The simple regret cannot be computed because the true
minimum of the GP sample is unknown a priori. Instead,
we report results assuming a very conservative lower bound
on all the possible sampled functions, i.e., minx∈X f(x) =
−4.0. We allow a maximum of T = 100 iterations, and
a budget of failures B = 15 in the constrained case. The
experiments were repeated 50 times for all algorithms. At
each repetition, a new function is sampled from the GP
priors.

In Table 3, we show a performance comparison of both,
XS and XSF in optimizing a 3D input space. Without the in-
fluence of hyperparameter optimization, the proposed meth-
ods reach lower observations than state-of-the-art methods.


