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1. Proofs
In this section we provide the proofs for the propositions from the paper. Along the way, we also prove a fact mentioned

in the paper – that every metric parallel parallel transport is an invertible linear map.
Recall, in the notation from the paper, that parallel transport satisfies:

(I) Γcs,s is the identity map on Tc(s)M ;

(II) Γcu,t ◦ Γcs,u = Γcs,t;

(III) Γcs,t depends smoothly on s and t.

Claim 1. Parallel transport between tangent spaces is bijective.

Proof. By (I), Γct,s ◦ Γcs,t = Γcs,s. By (II) Γcs,s is the identity map on Tc(s)M . Thus Γcs,t is a bijection between Tc(s)M
and a subset of Tc(t)M . We need to show that this subset is in fact the whole of Tc(t)M . Similar reasoning shows that Γct,s
is a bijection between Tc(t)M and a subset of Tc(s)M . We now use a proof by contradiction. Suppose there exists y in
Tc(t)M such that y 6∈ Γcs,t(Tc(s)M). We know that Γct,s(y) ∈ Tc(s)M and thus z , Γcs,t(Γ

c
t,s(y)) is in the image of Γcs,t. By

assumption, z 6= y. However, this is in contradiction to the fact that Γct,s ◦ Γcs,t is the identity map on Tc(t)M .

Of course, bijectivity implies surjectivity. The following theorem is well known from functional analysis.

Theorem (Mazur-Ulam). Every surjective isometry between two normed linear spaces is affine.

Here, the term isometry means a distance-preserving map.

Claim 2. Every surjective inner-product-preserving map between two inner-product spaces is linear.

Proof. An inner-product-preserving map between two inner-product spaces is an isometry. If the map is also surjective then
by the Mazur-Ulam Theorem it is affine. Let f : U → V be a surjective inner-product-preserving map between two inner-
product spaces U and V . Thus, f is affine: f : x 7→ Ax+ b where A is linear map A : U → V and b ∈ V . We need to show
that b = 0V , the zero element of V . If x, y ∈ U then,

〈x, y〉U = 〈Ax+ b, Ay + b〉V = 〈Ax,Ay〉V + 〈Ax, b〉V + 〈b, Ay〉V + ‖b‖2V . (1)
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Taking x = y = 0U , we get that

0 = ‖0U‖2U
= ‖A0U‖2V + 〈A0U , b〉V + 〈b, A0U 〉V + ‖b‖2V
= ‖0V ‖2V + 〈0V , b〉V + 〈b, 0V 〉V + ‖b‖2V
= 0 + 0 + 0 + ‖b‖2V ,

(2)

implying that b = 0V .

The following corollary follows immediately.

Corollary 1. Every metric parallel transport is linear.

We now prove Proposition 4.1 (Covariance/PCA Transport) from the paper.

Proof. Recall that V S2V T is the eigen-decomposition of XXT ∈ Rn×n and V SUT is the SVD of X ∈ Rn×N . Let
A , V TX = SUT ,A ∈ Rn×N . Denote the columns ofA byA = [a1, . . . , aN ] = [SuT1 , . . . , Su

T
1 ] where [u1, . . . , u1] , U .

Thus, X = V V TX = V A ∈ (TpM)N ∼= Rn×N and so xj = V aj =
∑n
k=1 vkAk,j ∈ TpM ∼= Rn. Applying a metric

parallel transport, we get (for x̃j ∈ TqM ∼= Rn),

x̃j =
‰�n∑

k=1

vkAk,j
linearity

=
n∑

k=1

ṽkAk,j = Ṽ aj . (3)

In other words, X̃ = Ṽ A = Ṽ SUT . Since V is orthogonal and inner products are preserved, we know that Ṽ is orthogonal
too. And since S is diagonal and U is orthogonal, it follows that Ṽ SU is indeed the SVD of X̃; namely, the left-singular
vectors of X̃ are exactly the transported left-singular vectors of X , while the singular values and right-singular vectors are

unchanged. As an aside remark, note that A
by def.

= V TX = Ṽ T X̃ since inner products are preserved. The fact that Ṽ S2Ṽ T

is the eigen-decomposition of X̃X̃T ∈ Rn×n follows from X̃X̃T = Ṽ SUUTSṼ T = Ṽ S2Ṽ T , concluding the proof of
part (i) of the proposition. Finally, by the usual connections between SVD and PCA, part(ii) is a direct consequence of part
(i).

We now prove Proposition 4.2 (Simple-Linear-Regression Transport) from the paper.

Proof.

β = arg min
α∈TpM

N∑

i=1

li(x
T
i α+ β0) (4)

= arg min
α∈TpM

N∑

i=1

li(〈xi, A−1
p α〉p + β0) (5)

= arg min
α∈TpM

N∑

i=1

li(〈Lxi, LA−1
p α〉q + β0) (6)

= arg min
α∈TpM

N∑

i=1

li(〈Lxi, A−1
q AqLA

−1
p α〉q + β0) . (7)

In the third equality we used the fact that L preserves inner products. The result above, together with the fact that
{
AqLA

−1
p α : α ∈ TpM

}
(8)



coincides with TqM (the map TpM → TqM : x 7→ AqLA
−1
p is bijective), implies that

AqLA
−1
p β = arg min

δ∈TqM

N∑

i=1

li(〈Lxi, A−1
q δ〉q + β0)

= arg min
δ∈TqM

N∑

i=1

li((Lxi)
T δ + β0) . (9)

2. Visualizing bases for the body shape experiments
Please see the video in the following link:

http://people.csail.mit.edu/freifeld/ModelTransport/EigenVecs_and_their_PT.mp4

In the video we show synthesis results as we move along the first few principal components. The first sequence in the movie
is for the gender experiment, while the second sequence is for the BMI experiment. On the left, we show the original VS basis
while on the right we show its parallel transport, VΓ. For example, in the first sequence, note how feminine shape changes
(left) look upon their parallel transport to the tangent space at the mean man shape (right).

3. Additional Results from the Shape Experiments Described in the Paper
See figures in the next pages. We first show results for 10 test examples from the BMI experiment, and then another 10

from the gender experiment. Each figure shows, from left to right: Ground Truth; VS reconstruction; VF reconstruction;
VS reconstruction error; VF reconstruction error. Frontal view is shown in the top row and profile is shown in the bottom.
Typically differences in reconstruction results are most noticeable in regions where the corresponding error maps differ
significantly in colors.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 1: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 2: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 3: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 4: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 5: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 6: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 7: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 8: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 9: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 10: BMI reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 11: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 12: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 13: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 14: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 15: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 16: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 17: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 18: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 19: Gender reconstruction example.



(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure 20: Gender reconstruction example.


