MAX-PLANCK-GESELLSCHAFT

1.Quick Summary

- Object models require a vast amount of training data to perform well
- Recent shift of attention to utilize weakly annotated data in videos
- Fundamental assumption of present day methods:
 - Motion and/or appearance of the object of interest is dominant • Object of interest forms the main theme of the video

Problem: Work on small and medium sized objects

- Video data for objects like mugs, plates etc. is scarce
- Labelled human activity data available in plenty
- Previous assumptions do not hold: dominant human

Input to the system

- Set of videos of similar activities
- Automatically extracted Human Pose

O Datasets for Experiments

- ETHZ (RGBD, TOI, Model Based Pose est.)
- CAD-120 (RGBD, Kinect, OpenNI tracker)
- MPII-Cooking (RGB, Pictorial structures)

2. Tubes Generation

Tubes generated by randomly selected superpixel and tracking algorithms

3.Model

Input is a set of action videos with human pose. Instances of the common objects are discovered by defining similarity in apperance and functionality as:

$E(L) = \sum_{v} \Phi(l_{v}) + \sum_{v,w} \Psi(l_{v}, l_{w})$

Unary: Binary:

App (saliency) Shape APP Functionality

Body avoidance Pose-object-relation

 $\Phi\left(l_{v}\right) = \lambda_{1} \Phi^{app}\left(l_{v}\right) + \lambda_{2} \Phi^{pose}\left(l_{v}\right)$ $+\lambda_{3}\Phi^{body}\left(l_{v}\right)+\lambda_{4}\Phi^{size}\left(l_{v}\right)$

 $\Psi\left(l_{v}, l_{w}\right) = \lambda_{5} \Psi^{shape}\left(l_{v}, l_{w}\right) + \lambda_{6} \Psi^{func}\left(l_{v}, l_{w}\right)$

Discovering Object Classes from Activities Abhilash Srikantha^{1,2} and Juergen Gall¹

¹Computer Vision Group, University of Bonn ²Perceiving Systems Department, Max Planck Institute for Intelligent Systems

object-pose relation size prior functionally similar $\left\{ \frac{1}{1} \sum_{i} \frac{\left(P_{\omega_{v}(k),i} - P_{\omega_{w}(k),i}\right)^{2}}{\overline{P}} \right\}$ similar shape

7.Results -proposed -PREST-MODIF

0.6 0.2 0.4 0.8 1-IoU Ratio

IOU distribution: Cumulative frame IOU distribution for MPII, ETHZ and CAD-120

Comparison with state-of-theart: Prior art full model, prior art using proposed tubes, full proposed model

	proposed	APP	APP+SIZ	FUN	APP+FUN	FUN+SIZ
ETHZ-Action	0.447	0.192	0.305	0.292	0.312	0.390
CAD-120	0.410	0.168	0.191	0.147	0.202	0.350
MPII-Cooking	0.342	0.079	0.149	0.229	0.235	0.288

	Φ^{app}	Φ^{pose}	Φ^{body}	Φ^{size}	Ψ^{shape}	Ψ^{func}
ETHZ-Action	0.35	1.88	-25.49	-13.50	-4.62	-8.86
CAD-120	-48.66	-15.73	-18.89	-20.80	-40.15	-9.19
MPII-Cooking	-15.85	0.06	-31.09	-10.70	0.058	-60.95

Evaluating individual potentials: (%) change in average class-IoU when discarded

	ETHZ	CAD	MPII
GTruth	60.6	29.4	47.8
Inferred	53.2	24.4	35.3

8. Inferred Tubes

	prest-exact	prest-modif	proposed
ETHZ	0.063	0.249	0.447
CAD	0.039	0.246	0.410
MPII	0.023	0.221	0.342

Evaluating potential groups: Average class IOUs for various combinations

Comparing object models: Average precision (%) of object detectors from groundtruth and inferred tubes

asrikantha@informatik.iai.uni-bonn.de gall@informatik.iai.uni-bonn.de